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Abstract. We present a quantum theory of magnetoplasmons in lateral multiwire superlattices.
The calculation of the dynamical response is performed in the framework of the random-
phase approximation using the tight-binding approximation for the electronic ground state. The
dependences of the dispersion relations of the magnetoplasmons on the propagation direction,
magnetic field and period of the lateral multiwire superlattice are investigated in detail. It is shown
that the magnetoplasmon spectrum shows fine-structure effects. Special attention is directed to the
strong-confinement case, where the size-quantization effects in each wire are most important and
electron tunnelling between the wires is weak.

1. Introduction

The progress in epitaxial crystal growth techniques of the last decade, which made it possible
to fabricate layered semiconductor heterostructures precise on the atomic scale, initiated a
broad range of fundamental research and novel applications in many fields of semiconductor
physics. These novel devices have unique physical properties, which arise from thequasi-two-
dimensional(Q2D) behaviour of the carriers. One of the challenging topics of current interest
involves systems of further reduced dimensionality: Q1Dquantum-well wires(QWWs), Q0D
quantum dots(QDs) andquantum rings(QRs). Quantum confinement caused by an artificial
spatially varying potential in the growth direction and in one lateral direction is realized in a
QWW, where the electron dynamics is essentially restricted to being quasi-one-dimensional.
Such QWWs with thicknesses less than 10 nm in the growth direction and lateral widths smaller
than 400 nm have been fabricated [1–5].

The spectrum of the collective charge-density excitations, i.e. ofplasmons,
characteristically depends on the dimensionality of the systems. Q1D plasmons have been
explored theoretically for isolated QWWs andlateral multiwire superlattices(LMWSLs) (see
e.g. [6–31]). Most of the theoretical work was done on a quantum-mechanical level using
therandom-phase approximation(RPA) to calculate the linear response to an external charge
neglecting retardation and within the hydrodynamic model, which is a phenomenological
model. The theoretical work on Q1D plasmons predicts, according to the size quantization,
two different types of excitations:intrasubband plasmons, which are connected with collective
(coherent) electron motion within one electric subband, andintersubband plasmons, which are
connected with collective (coherent) electron motion between two different electric subbands.

The excitation spectrum of thequasi-one-dimensional electron gas(Q1DEG) has been
studied experimentally byfar-infrared (FIR) optical absorption(see e.g. [4, 5, 32–36]) and
inelastic light scattering(see e.g. [3,37–44]). Most of the FIR optical measurements performed
up to now study thecollective intersubband transitions(intersubband resonances, dimensional
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resonances), which are associated with the collective electronic motion between different
subbands and which are standing waves in the lateral direction of the QWW. Plasmons, which
are travelling waves along the wire axis, are excited in FIR transmission with the help of
a metallic grating coupler on top of the sample. In contrast, in inelastic light scattering
experiments it is possible to observe plasmons directly.

The effects of a quantizing magnetic field on intra- and intersubband plasmons in single
QWWs are investigated extensively. FIR optical transmission experiments on QWWs with an
applied external magnetic field show a more complex resonance structure than in the absence of
the magnetic field. Unfortunately, earlier theories on magnetoplasmons [9,18] fail to explain
these experimental findings and give quite different results for the Q1D magnetoplasmons.

Recently, the authors of the present paper presented a new quantum-mechanical approach
for investigating the dynamical properties of the Q1DEG, quantum confined in a single
isolated QWW, in the presence of a static magnetic field [29–31]. Using this fully non-
local RPA response theory it was shown thatadditional intersubband magnetoplasmons exist
in comparison to (i) a Q1DEG in the absence of a magnetic field and to (ii) a (strict) 2DEG
(i.e. a Q2DEG of zero thickness) in the presence of a static magnetic field. For large magnetic
fields the dispersion curve of the intrasubband plasmon (there is only one if one subband is
occupied) tends to zero like an edge magnetoplasmon of a spatially confined 2DEG, whereas
the intersubband magnetoplasmons have dispersion relations approaching the frequencies of
theprincipal andBernsteinmodes of a 2DEG in this limit. On the basis of these results it is
possible to interpret the Q1D magnetoplasmons in the range of larger magnetic fields assize-
quantized (confined)principal and Bernstein modes. But in contrast to the case for the 2DEG,
for the Q1DEG more than one branch of dispersion curves approaches each asymptote. The
additional modes(AMs) arise due to the reduced symmetry of the system, i.e. the spectrum of
the Q1D magnetoplasmons showsfine-structure effects[29–31]. At smaller magnetic fields
all the modes strongly hybridize and the spectrum of the Q1D magnetoplasmons results. For
B → 0 the AMs approach the frequencies of the single-particle excitations and, thus, lose their
collective character analogously to the Bernstein modes of higher-dimensional electron gases in
this limit. Thus, at small magnetic fields the AMs of a single isolated QWW may be interpreted
as the Q1D analogues of the Bernstein modes. The remaining dispersion curves approach at
B = 0 the frequencies of the Q1D plasmons and, hence, are calledfundamental modes(FMs). It
is shown that this physical picture of the mode spectrum isuniversal, i.e. does not depend on the
concrete shape of the lateral confining potential. Furthermore, it is shown [45] that the Q1DEG
in a single QWW absorbs normally incident FIR light at the frequencies of the antisymmetric
intersubband resonances of both FMs and AMs. Whereas the antisymmetric FMs absorb the
light with a strength which increases with increasing magnetic field, the absorption strength
of the antisymmetric AMs vanishes for zero and very large magnetic fields.

However, up to now the theory of magnetoplasmons of LMWSLs has attracted only
little attention. This is somewhat surprising because most experiments are performed on
LMWSLs and not on single QWWs. LMWSLs can be made, for example, by fabricating
using nanotechniques a grating-like gate on top of a semiconductor heterostructure containing
a Q2DEG. If a gate voltage is applied, a periodic electron-density modulation is induced via
the field effect in the Q2DEG, which can be tuned up to the periodic array of parallel QWWs,
schematically shown in figure 1. Electrons move freely along the wire axes, but experience
a periodic confining potential in the direction perpendicular to the wires. Three important
effects are present for collective excitations in LMWSLs: (i) size quantization in each wire
in the lateral direction, (ii) tunnelling of the electrons between the wires and (iii) Coulomb
coupling between the electrons of different wires.

In the present paper we extend our previous work on Q1D magnetoplasmons in single
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Figure 1. A schematic representation of a lateral multiwire superlattice induced via the field effect
of a grating-like gate on top of the sample (a). The lower part (b) schematically shows the spatial
dependence of the conduction-band edge and the subband quantization in each single QWW. The
effective widths of the single-electron channels arew, V0 is the depth of the single-well parabolic
potential andd is the superlattice period.

QWWs [29–31] to LMWSLs. The aim of this paper is to develop a theory of the density
response for a LMWSL in the presence of a quantizing magnetic field and to find an answer to
the question regarding the influence of the lateral periodicity and interwire Coulomb interaction
on the properties of the magnetoplasmon spectrum, especially on its fine structure.

The present paper is arranged as follows. In section 2 the electronic ground state is
considered. The density response of the LMWSL in the presence of an externally applied
magnetic field is developed in section 3. In section 4 we present the numerical results for
the dispersion relations of the magnetoplasmons in LMWSLs and we give our conclusions in
section 5.

2. Ground state

The electrons present in the different laterally arranged wires forming the LMWSL couple
through the Coulomb interaction and the electron wave functions may overlap in the lateral
direction, thereby giving rise to possible lateral electron tunnelling between adjacent QWWs.
This overlap of the electron wave functions we will treat in thetight-binding approximation.
The unperturbed effective single-particle Hamiltonian in the effective-mass approximation
for the electrons of the LMWSL in the presence of a static homogeneous magnetic field
B = (0, 0, B), applied perpendicular to the heterointerfaces, is given by

H0 = 1

2me
[pe + eA(x)]2 + Veff (x)

where we ignore the Zeeman spin splitting. Throughout this paper we omit the spin quantum
number and coordinate, but assume that the spin summation is included when necessary without
any explicit indication. Here,pe = (h̄/i)∇ is the momentum operator of the electron with
charge−e and effective conduction-band-edge massme andA(x) is the vector potential of
the (externally applied) DC magnetic fieldB = ∇×A(x). Theeffective confining potential
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Veff (x) = Veff (y, z) is the sum of thebare potentialand the many-particle contributions
(Hartree potentialandexchange–correlation potential) and gives rise to electron confinement
in two spatial directions, which we choose to be they-direction (lateral direction) and the
z-direction (growth direction). In thex-direction, along the wire axes, the electron motion is
assumed to be quasi-free. Self-consistent calculations [46] reveal that the separation

Veff (y, z) = Veff (y) + Veff (z)

is reasonable as long as the confinement in the lateral direction is much weaker than that in the
growth direction. This is the case in the experimentally realized systems, considered in this
paper. Here, we assume for simplicity, but without loss of generality, thatVeff (z) confines the
electrons in a zero-thicknessx–y plane atz = 0. In they-direction the potential is periodic:

Veff (y) = Veff (y +md)

with d the superlattice period. In this direction we assume Born–von Kármán boundary
conditions andm = 0, 1, 2, . . . ,M − 1 wells within the unit lengthLy = Md. The effective
confining potential in they-direction is assumed to be constructed in the form

Veff (y) =
M−1∑
m=0

V sweff (y −md)

whereV sw
eff (y −md) is the effective potential of a single well centred aty = md.

One suitable example for the single-well potential, which usually appears in semiconductor
nanostructures with electrostatic confinement and small electron densities, is a parabolic
potential of finite heightV0:

V sweff (y −md) =
{
me�

2(y −md)2/2 if |y −md| 6 w/2
V0 otherwise

wherew = [8V0/(me�
2)]1/2 is the width of the well and� is the confining frequency. Such

a shape of the effective potential is justified by self-consistent ground-state calculations [47].
With the use of the Landau gaugeA(x) = (−yB,0, 0) for the vector potential the single-
particle Hamiltonian of a single parabolic well aty = md reads

Hsw
0 =


p2
e

2me
− ωc(y −md)pex +

me

2
ω̃2
c (y −md)2 + Veff (z) if |y −md| 6 w

2

p2
e

2me
− ωcypex +

me

2
ω2
cy

2 + V0 + Veff (z) if |y −md| > w

2

(1)

wherepeα is theαth component of the electron momentum operator,ωc = eB/me is the
cyclotron frequency and̃ωc = (ω2

c +�2)1/2 is the hybrid frequency. Because [pex ,H
sw
0 ] = 0,

one can diagonalizepex andHsw
0 simultaneously. For each eigenvalue ¯hkx of pex (kx is the

electron wave-vector component in thex-direction), the Hamiltonian has a discrete spectrum
of energy eigenvalues, resulting from the electron motion in they- andz-directions. Thus, the
eigenvalue problem ofHsw

0 in they–z plane becomes equivalent to two separate equations, one
for the size quantization in thez-direction and one for the mixed size and magnetic quantization
in they-direction. The single-particle Schrödinger equation for the electron motion in the single
well at z = md is solved by the wave function

〈x|N, kx〉sw ≡ 9sw
Nkx
(x) = 1√

Lx
eikxx8N(y − Ykx −md)ϕ(z) (2)

whereLx is the unit length in thex-direction (we assume Born–von Kármán boundary cond-
itions). Furthermore,Ykx = γ l̃ 2

0kx is the centre coordinate with̃l0 = [h̄/(meω̃c)]1/2 the
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effective width of the wave function in they-direction and we have definedγ = ωc/ω̃c and
|ϕ(z)|2 = δ(z). In general, the wave function8N(y − Ykx − md) of a single electron inside
a single parabolic quantum well of finite height is given by a degenerate hypergeometric
function and for motion outside by an exponential function. Fortunately, under the condition
h̄�/V0� 1, for the energetically lowest-lying levels, this wave function can be approximated
by the shifted harmonic-oscillator wave function:

8N(y − Ykx −md) =
1√

2NN !π1/2l̃0

exp

[
− 1

2l̃ 2
0

(y − Ykx −md)2
]

× HN
[

1

l̃0
(y − Ykx −md)

]
(3)

whereHN(y) is Hermite’s polynomial. The associated energy eigenvalues of this single QWW
follow in the well-known formEN(kx) = EN + h̄2k2

x/(2m̃e), where in this case the subband
bottoms are given byEN = h̄ω̃c(N + 1/2); N = 0, 1, 2, . . ., andm̃e = me(ω̃c/�)

2 is the
magnetic-field-dependent effective mass.

The single-particle wave function of the LMWSL is given in the tight-binding
approximation by

9Nkxky (x) =
1√
Lx

eikxxηNkxky (y − Ykx )ϕ(z) (4)

with

ηNkxky (y − Ykx ) =
∞∑
N ′=0

M−1∑
m=0

CNN ′(ky)e
ikymd8N ′(y − Ykx −md) (5)

assuming that the centre coordinate is located inside the associated single QWW. Obviously,

ηNkxky (y − Ykx + nd) = eikyndηNkxky (y − Ykx )
is fulfilled and, thus, we have

ηNkxky (y − Ykx ) = eikyyuNkxky (y − Ykx )
according to Bloch’s theorem with

uNkxky (y − Ykx + nd) = uNkxky (y − Ykx )

≡
∞∑
N ′=0

M−1∑
m=0

CNN ′(ky)e
−iky(y−md)8N ′(y − Ykx −md).

If the levels of the single well are non-degenerate and well separated, no hybridization takes
place, i.e. we haveCNN ′(ky) = δNN ′CNky /

√
M, where

CNky =
1√

1 + 2αN cos(kyd)
. (6)

Herein,αN is the nearest-neighbour overlap parameter

αN =
∫ 3d/2

−d/2
dy 8∗N(y)8N(y − d). (7)

The associated energy eigenvalues of a single electron in the LMWSL, theminibands, are
given by

EN(kx, ky) = EN + βNkx [1− 2αN cos(kyd)] + 2γNkx cos(kyd) +
h̄2k2

x

2m̃e
(8)
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where

βNkx =
∫ d/2

−d/2
dy 8∗N(y − Ykx )1Veff (y)8N(y − Ykx ) (9)

γNkx =
∫ 3d/2

−d/2
dy 8∗N(y − Ykx )1Veff (y)8N(y − Ykx − d) (10)

and1Veff (y) = Veff (y)− V sweff (y). For a superlattice potential of the form

Veff (y) =
M−1∑
m=0

V sweff (y −md)

under consideration, we have1Veff (y) = 0 for −d/26 y 6 d/2 and, thus,βNkx = 0.
It becomes obvious thatEN(kx, ky) = EN(kx, ky + Gn) is valid, whereGn = (2π/d)n;
n = 0,±1,±2, . . ., is thereciprocal-lattice vectorof the LMWSL and, thus, the wave-vector
componentky varies within thefirst mini-Brillouin zone−π/d < ky 6 π/d.

The Fermi energyEF is obtained from the self-consistently solved equation

n2DEG = 1

2π2

∑
N

∫ ∞
−∞

dkx

∫ π/d

−π/d
dky 2

(
EF − EN − 2γNkx cos(kyd)− h̄

2k2
x

2m̃e

)
(11)

wheren2DEG is the number of electrons per unit areaA = LxLy . In the absence of tunnelling
we haveγNkx = 0 and from equation (11) it follows that

n1DEG = 4

πh̄

√
m̃e

2

∑
N

√
EF − EN 2(EF − EN). (12)

Herein,n1DEG = n2DEGd is the number of electrons per unit length in a single QWW and
2(x) is the Heaviside unit step function:2(x) = 1 for x > 1 and2(x) = 0 for x < 0.

3. Density response of a LMWSL

In this section, we calculate the linear response of a LMWSL to an external (scalar) potential on
a quantum-mechanical level in the framework of the RPA, using theself-consistent-field(SCF)
method. For many purposes, 1D systems are simpler than 3D ones, because the more restricted
phase space often allows one to obtain exact solutions to non-trivial statistical-mechanical
problems. Unfortunately, this situation does not apply to problems involving electrodynamics.
Because of the three-dimensionality of the sample, the fields are not only in the Q1D electron
channel but also in the surrounding media. As a result of this Coulomb coupling the relations
between the quantum-confined charges and the potentials become non-local and very complex
and, thus, the different electron motions are not independent.

The single-particle Hamiltonian of the electrons confined in the LMWSL in the presence
of the perturbation is written asH(x, t) = H0(x) +H1(x, t), whereH0 is the Hamiltonian of
the unperturbed system, satisfying the eigenvalue equation

H0|N, kx, ky〉 = EN(kx, ky)|N, kx, ky〉
and the perturbationH1 = V sc(x, t) is theself-consistent potential, which is a sum of the
external potentialV ext (x, t) and theinduced potentialV ind(x, t). Writing the statistical
operator%G of the system as%G = %

(0)
G + %(1)G , where%(0)G is the single-particle statistical

operator of the unperturbed system and%(1)G is the correction to the statistical operator to the
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first order in the perturbation, switching on the external potential adiabatically and taking
matrix elements of the linearized von Neumann equation, it follows that

〈N, kx, ky |%(1)G |N ′, k′x, k′y〉

= nF [EN ′(k′x, k′y)] − nF [EN(kx, ky)]
h̄(ω + iδ) + EN ′(k′x, k′y)− EN(kx, ky)

〈N, kx, ky |V sc(x, ω)|N ′, k′x, k′y〉. (13)

In this equation,

%
(0)
G |N, kx, ky〉 = nF [EN(kx, ky)]|N, kx, ky〉

is used, withnF [EN(kx, ky)] = 2[EF − EN(kx, ky)] the Fermi distribution function atT = 0
and δ → 0+. Next, we calculate the (frequency-dependent) total electron number density
n(x, ω) = n0(x)+nind(x, ω) of the LMWSL, which is a sum of the equilibrium ground-state
electron number densityn0(x) = Tr {%(0)G δ(x−xe)} and the induced electron number density
nind(x, ω) = Tr {%(1)G δ(x − xe)}, performing the trace (Tr) in the grand-canonical ensemble.
According to the translational invariance in thex-direction (homogeneity), thex-component
qx of the wave vector is a conserved quantity. However, in they-direction the translational
symmetry (periodicity) guarantees that they-component of the wave vectorqy is conserved
only up to the reciprocal-lattice vectorGn. This means that a perturbation of the wave-vector
componentqy induces a response at all wave vectorsqy + Gn, whereGn is any reciprocal-
lattice vector. This symmetry property is profitable exploited by using the 2D Fourier (series)
transform

f (x, ω) = 1

LxLy

∑
qx

∑
qy

(qy∈ first mBz)

∑
Gn

eiqxxei(qy+Gn)yf (qx, qy +Gn; z|ω) (14)

and its inverse

f (qx, qy +Gn; z|ω) =
∫
Lx

dx
∫
Ly

dy e−iqxxe−i(qy+Gn)yf (x, ω) (15)

where the sum overqy extends over all values in the first mini-Brillouin zone (mBz). Then,
the density responsenind(qx, qy +Gn; z|ω) to V sc(qx, qy +Gn; z|ω) is given by

nind(qx, qy +Gn; z|ω) =
∑
G′n

P (1)(qx, qy +Gn, qy +G′n|ω)V sc(qx, qy +G′n; z|ω)δ(z) (16)

whereP (1)(qx, qy +Gn, qy +G′n|ω) is theirreducibleRPApolarization function,

P (1)(qx, qy +Gn, qy +G′n|ω) =
∑
NN ′

P
(1)
NN ′(qx, qy +Gn, qy +G′n|ω) (17)

and thematrix polarization functionP (1)NN ′(qx, qy +Gn, qy +G′n|ω) reads

P
(1)
NN ′(qx, qy +Gn, qy +G′n|ω)

= 2

LxLy

∑
kx

∑
ky

(ky∈ first mBz)

nF [EN ′(kx + qx, ky − qy)] − nF [EN(kx, ky)]
h̄(ω + iδ) + EN ′(kx + qx, ky − qy)− EN(kx, ky)

× |CNkyCN ′ky−qy |2BNN ′(kx, ky, qx, qy +Gn)B
∗
NN ′(kx, ky, qx, qy +G′n) (18)

where

BNN ′(kx, ky, qx, qy +Gn) =
M−1∑
m=0

eikymdA
(m)
NN ′(kx, qx, qy +Gn) (19)
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with

A
(m)
NN ′(kx, qx, qy +Gn) =

∫ Ly

0
dy ei(qy+Gn)y8∗N(y − Ykx −md)8N ′(y − Ykx+qx ). (20)

For the model of the LMWSL chosen here we obtain

A
(m)
NN ′(kx, qx, qy +Gn) =

(
L2!

2L1−L2L1!

)1/2

exp

{
−1

4

[
(qy +Gn)

2l̃ 2
0 +

(
γ l̃0qx +

md

l̃0

)2]
+ i
(qy +Gn)l̃0

2

[
γ l̃0(2kx + qx)− md

l̃0

]}
×
[
i(qy +Gn)l̃0 − sgn(N ′ −N)

(
γ l̃0qx +

md

l̃0

)]N1−N2

× LN1−N2
N2

{
1

2

[
(qy +Gn)

2l̃ 2
0 +

(
γ l̃0qx +

md

l̃0

)2]}
(21)

whereN1 = max(N,N ′), N2 = min(N,N ′), LN
′

N (x) is the associated Laguerre polynomial
and we have defined sgn(x) = +1 for x > 0 and sgn(x) = −1 for x < 0.

The induced density is the source of the induced potential. In the RPA and neglecting
retardation effects (the influence of retardation effects is discussed e.g. in reference [24])
both quantities are related via Poisson’s equation. Assuming a homogeneous dielectric back-
ground, i.e. we neglect image effects (the influence of image effects is discussed e.g. in ref-
erences [25,27]), Poisson’s equation reads[
∂2

∂z2
− [q2

x + (qy +Gn)
2]

]
V ind(qx, qy +Gn; z|ω) = − e2

ε0εs
nind(qx, qy +Gn; z|ω) (22)

whereε0 is the permittivity of vacuum. For the screening of the homogeneous dielectric back-
ground we use theεs-approximation, i.e. use the static electric constantεs . The self-consistent
potential follows from equation (22) in the form

V sc(qx, qy +Gn; z|ω) = V ext (qx, qy +Gn, z|ω) + V s(qx, qy +Gn)e
−
√
q2
x+(qy+Gn)2|z|

×
∑
G′n

P (1)(qx, qy +Gn, qy +G′n|ω)V sc(qx, qy +G′n; 0|ω) (23)

where

V s(qx, qy +Gn) = e2

2ε0εs
√
q2
x + (qy +Gn)2

. (24)

Taking the matrix elements of equation (23) with the wave functions of equation (4) and
assuming that collective charge-density excitations of the LMWSL exist under the condition
thatV sc 6= 0 whileV ext = 0, the existence condition for the collective excitation reads

det
[
δGnG′n − V s(qx, qy +Gn)P

(1)(qx, qy +Gn, qy +G′n|ω)
] = 0. (25)

This determinantal equation is thedispersion relation of magnetoplasmonsof LMWSLs if the
imaginary part ofP (1)(qx, qy +Gn, qy +G′n|ω) is zero. In the dispersion relation all minibands
EN(kx, ky) are involved in the RPA polarization function, equation (17). Then, due to the
intersubband (or interminiband) coupling(ISC) the collective motion of the electrons is not
independent in and between the different minibands. Thus, a magnetoplasmon excited in the
LMWSL is in principle accompanied by all possible electron motions: (i) within the occupied
minibands and (ii) between the different minibands. Which collective intra- and interminiband
motions are coupled in a definite situation depends on the symmetry properties of the sample



Magnetoplasmons in lateral multiwire superlattices 4207

under consideration (see e.g. the discussion in reference [31]). Only in the absence of ISC, do
‘pure’ (N–N ) intrasubband magnetoplasmons,ω = ωNNmp (qx, qy;B), accompanied by electron
transitions within the minibandN , and do ‘pure’ (N–N ′) intersubband magnetoplasmons,
ω = ωNN

′
mp (qx, qy;B), accompanied by electron transitions between the minibandsN ′ and

N , occur. Because usually only a few minibands are occupied, one can successfully apply
a multi-miniband modelwith N = 0, 1, 2, . . . , M̄ − 1 minibands taken into account. The
restriction to a small number of minibands is possible because the matrix polarization function
has the propertiesP (1)NN ′(qx, qy + Gn, qy + G′n|ω) → 0 if |N − N ′| becomes large and
P
(1)
NN ′(qx, qy+Gn, qy+G′n|ω) = 0 if both of the inequalitiesEN > EF andE ′N > EF are fulfilled.

It becomes obvious that the dispersion relation, equation (25), depends on Umklapp processes.
Becausen andn′ run through all integers, the determinantal equation is, in principle, of infinite
order. For practical purposes, one has to find out how fast the solutions of this determinantal
equation converge as a function ofGn andG′n and choose the order of the determinant on the
basis of a suitable convergence criterion.

The dispersion relation of the magnetoplasmons of the LMWSL is very general, valid as
long as the tight-binding approximation and the RPA are valid. It is applicable to LMWSLs
either with or without electron tunnelling between the wires. In the special situation for which
the electron tunnelling between the single QWWs of the LMWSL can be neglected, i.e. if
h̄�/V0� 1, we haveBNN ′(kx, ky, qx, qy+Gn) = A(0)NN ′(kx, qx, qy+Gn) andCLky = 1. In this
case the collective electron motion in the different wires is coupled via the Coulomb potential
(interwire Coulomb interaction), i.e. we have pureCoulomb-coupled Q1D magnetoplasmons.
This regime is the situation mostly realized in the experiments with which we deal in detail in
the next section.

4. Collective excitation: magnetoplasmons of LMWSLs

In this section we present numerical results for the dispersion relations of magnetoplasmons
in LMWSLs. Because in the LMWSLs used up to now in experiments the superlattice
periodd is larger than 150 nm, tunnelling of the electrons between the QWWs is physically
unimportant. Thus, we neglect tunnelling in the numerical calculation of the dispersion
relations of the collective charge-density excitations. We perform these calculations assuming
a three-miniband model. We have chosen a GaAs–Ga1−xAl xAs LMWSL (GaAs:εs = 12.87
andme = 0.06624m0; m0: bare electron mass) with a confining energy ¯h� = 2 meV
of the effective potentialV sweff (y) of a single well and assumed an electron density of
n1DEG = 3 × 105 cm−1. In this case only the lowest subband of each single QWW is
occupied.

The full RPA dispersion relations of the magnetoplasmons of the LMWSL,ω =
ωNN

′
mp (qx, qy;B), are calculated from equation (25). The dependences of the plasmon

dispersion curvesωNN
′

p (qx, qy;B = 0) on the wave-vector componentqx for vanishing
magnetic field (B = 0) and three different periods of the LMWSL are plotted in figure 2.
In the case of vanishing magnetic field andd = 1000 nm (figure 2(a)) three different branches
of dispersion curves of plasmons result for each value ofqy . Because of the large superlattice
period the Coulomb coupling is so weak that

ωNN
′

p (qx, qy = 0; 0) ≈ ωNN ′p (qx, qy = π/d; 0)
i.e. the three branchesω00

p , ω10
p andω20

p of dispersion curves are nearly identical to that
of a single isolated QWW (for details including the notation scheme of the mode used,
see references [28, 31]). It is seen from figure 2(a) that the intrasubband plasmonω00

p
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Figure 2. The dependence of the dispersion relations of the plasmons
of a LMWSL calculated in the RPA on the wave-vector component
qx forB = 0: (a)d = 1000 nm, (b)d = 200 nm and (c) d= 100 nm.
The hatched areas indicate the plasmon minibands (boundaries are
shown forqy = 0 by solid curves and forqy = π/d by dashed
curves) and the shaded areas correspond to the single-particle intra-
and intersubband continua.

has a vanishing frequency forqx = 0, but the intersubband modesω10
p and ω20

p of the
LMWSL start at qx = qy = 0 above the corresponding subband separation frequency
�N0 = (EN − E0)/h̄ = N�. In the framework of the RPA this frequency shift is the
depolarization shift

1N0
p = ωN0

p (qx = 0, qy = 0;B = 0)−N�.
Thus, for large superlattice periods thelong-wavelength dispersion relationsof the lowest

frequency Q1D plasmons of the LMWSL are

ω00
p (qx, qy;B = 0) ∝ qxl�

[(
h̄πn1DEG

2mel�

)2

− n1DEGe
2

2πε0εsmel�
ln(|qx |l�)

]1/2

ω10
p (qx, qy;B = 0) ∝

(
1 +

n1DEGe
2

2πε0εsh̄�

)1/2

�

and

ω20
p (qx, qy;B = 0) ∝

(
1 +

n1DEGe
2

8πε0εsh̄�

)1/2

(2�)
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wherel� = [h̄/(me�)]1/2.
The shaded areas in figure 2(a) are thesingle-particle continua, i.e. the regions of existence

of thesingle-particle excitations(SPEs). The plasmon dispersion relations are plotted for the
LMWSL with d = 200 nm andd = 100 nm in figures 2(b) and 2(c), respectively. In these
and in the following figures we have plotted the different branchesω00

p , ω10
p , ω20

p of dispersion
relations forqy = 0 (solid curves) andqy = π/d (dashed curves), i.e. the plotted dispersion
curves are the boundaries of theplasmon and magnetoplasmon minibands, represented by
the differently hatched areas between these curves. This miniband structure of the LMWSL
plasmon dispersion relations arises due to the Coulomb coupling between the different wires. It
is seen from figures 2(b) and 2(c) that with decreasing superlattice period the difference between
ωNN

′
p (qx, qy = 0; 0)andωNN

′
p (qx, qy = π/d; 0) increases, i.e. the plasmon minibands become

broader. Furthermore, it becomes obvious that an increasing ofqy decreases the frequency of
the (0–0) intrasubband plasmon branch and that of the (2–0) intersubband plasmon branch,
but increases the frequency of the (1–0) intersubband plasmon branch.

The (0–0) intrasubband plasmon branch behaves for smaller superlattice periods and
qy = 0 like anoptical plasmon, i.e. the induced electron densities in adjacent wires oscillatein
phase. With decreasingd this branch becomes more and more the character of a 2D plasmon:
ω00
p (qx, qy = 0;B = 0) ∝ √qx . But for qy = π

d
the (0–0) intrasubband plasmon branch

behaves like anacoustic plasmon, i.e. the induced electron densities in adjacent wires oscillate
in anti-phase. In this case, we haveω00

p (qx, qy = π
d
;B = 0) ∝ qx for smaller superlattice

periodsd.
The case of non-vanishing magnetic field (B = 1 T) is plotted in figures 3(a) to 3(c).

Comparing these figures with figure 2, it becomes obvious that in the presence of a magnetic
field additional modes, forming minibands, appear compared to the caseB = 0. In detail, for
the large-period LMWSL (figure 3(a)) we practically reproduce the same dispersion curves
as for a single isolated QWW (see figure 3(b) in reference [31]): one (0–0) intrasubband
magnetoplasmon branchω00

mp, but three (1–0) intersubband magnetoplasmon branchesω10;1
mp ,

ω10;2
mp , ω10;3

mp and also three (2–0) intersubband magnetoplasmon branchesω20;1
mp , ω20;2

mp and
ω20;3
mp are observable. Thus, we find for the magnetoplasmons of the LMWSL besides the

fundamental(intersubband)modes(FMs),ωN0;j=1
mp , also theadditional(intersubband)modes

(AMs), ωN0;j>1
mp . Here, the quantum numberj denotes the magnetoplasmon minibands of

each group{N0}, ordered according to decreasing depolarization shift. Hence, the spectrum
of magnetoplasmons of a LMWSL shows the samefine-structure effectsas that of Q1D
magnetoplasmons of a single isolated QWW. This result is obvious because in the framework
of the tight-binding approximation (with and without tunnelling) the modes of each single
isolated wire play an important role in forming the Coulomb-coupled modes of the LMWSL.
It is seen from figures 3(b) and 3(c) that for a smaller superlattice period both types of mode,
FMs and AMs, are accompanied by a miniband structure of the dispersion relation. The
minibands of the AMs have for a given magnetic field two stop-points

q
N0;j
xs(0) = qx(qy = 0;B|ωN0;j

mp = ωN0
1 )

and

q
N0;j
xs(π/d) = qx(qy = π/d;B|ωN0;j

mp = ωN0
1 )

at the upper boundaryωN0
1 of the corresponding single-particle continuum. Hence, for

qx > q
N0;j
xs(qy)

(qy;B) the AMs become Landau damped. Further stop-points may occur for
different parameters of the LMWSL at the boundaries of other SPE continua.

The RPA dispersion curves of the magnetoplasmons in theω–B plane are plotted in
figures 4(a) and 4(b) forqx = 0 and two different periodsd of the LMWSL, respectively. Again,
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Figure 3. The dependence of the dispersion relations of the magnetoplasmons of a LMWSL
calculated in the RPA on the wave-vector componentqx for B = 1 T: (a) d = 1000 nm,
(b) d = 200 nm and (c)d = 100 nm. The hatched areas indicate the magnetoplasmon mini-
bands (boundaries are shown forqy = 0 by solid curves and forqy = π/d by dashed curves) and
the shaded areas correspond to the single-particle intra- and intersubband continua.

these dispersion curves are plotted for the boundaries of the magnetoplasmon minibands:
ω
N0;j
mp (qy = 0) andωN0;j

mp (qy = π/d). It is seen from these figures that forqx = 0 the
intrasubband magnetoplasmonω00

mp is absent and the SPE continua degenerate to the single
lines ω̃c, 2ω̃c, 3ω̃c, . . ., shown by the thin solid curves. That in the absence of electron
tunnelling between the wires the intrasubband magnetoplasmon modes vanish forqx = 0
becomes obvious from the fact that forqx = 0 there is no electron motion along each
wire. Thus, ford → ∞, i.e. in the case of single isolated QWWs, no magnetoplasmons
are present atqx = 0 and these modes cannot be generated by the Coulomb coupling for
decreasingd. It is seen that the widths of the intersubband magnetoplasmon minibands
decrease with increasing magnetic field and the intersubband magnetoplasmons approach for
large magnetic fields (i.e. in the 2D limit) multiples of the cyclotron frequencyωc. Thus,
the (1–0) intersubband magnetoplasmon branchesω

10;j
mp (qx = 0, qy;B) approach for large
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Figure 4. The dependence of the dispersion relations of the magnetoplasmons of a LMWSL
calculated in the RPA on the magnetic fieldB for qx = 0: (a)d = 200 nm and (b)d = 100 nm.
The thin curves in the inset of (a) show the uncoupled modes, calculated using the diagonal
approximation, and the heavy curves show the coupled modes. The hatched areas indicate the
magnetoplasmon minibands (boundaries are shown forqy = 0 by solid curves and forqy = π/d
by dashed curves).

magnetic fields the dispersion curve of theprincipal modeof a 2DEG and the (2–0) intersubband
magnetoplasmon branchesω20;j

mp (qx = 0, qy;B) approach in this limit the dispersion relation
of the firstBernstein modeof a 2DEG (see e.g. reference [48] for the magnetoplasmons of a
2DEG). It becomes obvious from figures 4(a) and 4(b) that the properties of the FM and AM
minibands are different. The FM minibands have for all magnetic fields a finite depolarization
shift, whereas in general the depolarization shift of the AM minibands vanishes atB = 0 and
for B →∞. It is seen that in figures 4(a) and 4(b) the depolarization shift of the AM branches
denoted byω10;2

mp andω10;3
mp vanishes atB = 0, but the AM branch denoted byω20;2

mp does
not show this property. The reason for this different behaviour of the branchω20;2

mp is that the
uncoupled modesω10;1

mp andω20;2
mp (i.e. the ‘pure’ modes), which are calculated in thediagonal

approximationby using

P
(1)
NN ′ = [δNN1δN ′N2P

(1)
N1N2

+ δNN2δN ′N1P
(1)
N2N1

]/(1 + δN1N2)

in equation (25) (for details see reference [31]) and shown by the thin curves in the inset of
figure 4(a), do cross at small magnetic fields. Such a crossing of the uncoupled modes becomes
possible because the depolarization shift of the FMs increases with increasing electron density,
while the AMs are pinned at the upper boundary of the associated SPE continuum atB = 0.
If the accompanying electron transitions of the crossing branches are not independent, the ISC
results in a mode hybridization, i.e. in two resonance-split hybrid modes. Thus, the branch
denoted byω20;2

mp has for small magnetic fields (i.e. left from the crossing of the uncoupled
modes) the character of the FMω10;1

mp and, hence, has a finite depolarization shift atB = 0.
With increasing magnetic field the character of this branch becomes more and more that of an
AM. The opposite is true for the branch denoted byω10;1

mp . It is noticeable that, depending on the
concrete set of physical parameters of the LMWSL, many such resonance splittings may occur.
This results in a very complex mode spectrum with branches of dispersion curves showing
quite different character when varying the magnetic field. Obviously, the depolarization shift
of the AM minibands has its maximum at intermediate magnetic fields, where the magnetic
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quantization becomes comparable with the size quantization in each wire. Hence, the FMs
ω
N0;j=1
mp have the propertyωN0;1

mp → ωN0
p if B → 0 and they also exist forB →∞, whereas

the (‘pure’) AMsωN0;j>1
mp are absent forB = 0 andB = ∞. As shown in reference [31], for

B 6= 0 andB 6= ∞ the AMs of a single isolated QWW arise due to the reduced symmetry
in the presence of a magnetic field. The FMs and AMs can be interpreted for larger magnetic
fields (i.e. near the 2D limit) asconfined principal modes(ω10;j

mp ) andconfined Bernstein modes
(ωN0;j

mp for each pair{N0} with N > 1), which strongly hybridize at intermediate and smaller
magnetic fields. Furthermore, forB → 0 the FMs originate from the confined principal modes
and the AMs lose their collective character atB = 0 like the Bernstein modes of a 2DEG or
a 3DEG, i.e. in this limit the AMs may be interpreted as the Q1D analogues of the Bernstein
modes. It should be noted that for very large magnetic fields all magnetoplasmon modes of
the LMWSL are free of Landau damping because of the completely quantized situation in the
2D limit.

In figures 5(a) and 5(b) the corresponding collective excitations, i.e. the mixed (0–
0)–(1–0)–(2–0) magnetoplasmons, are plotted for the finite-wave-vector componentqx =
1× 105 cm−1. In this case the intrasubband magnetoplasmon minibandω00

mp is present and
the SPE continua have a finite width. The intrasubband magnetoplasmon miniband shows
for fixed qx and qy a negative slope with increasing magnetic field, i.e. the intrasubband
magnetoplasmon branch of a LMWSL has the character of anedge mode, analogous to the
intrasubband magnetoplasmon of a single isolated QWW. The finite width of the SPE continua
restricts the regions of existence of the collective modes free of Landau damping. From
figures 5(a) and 5(b) it becomes obvious that the AMs,ω

N0;j>1
mp , approach forB → 0 and

B →∞ the corresponding single-particle continua. Thus, in the case of a finite wave vector
of the modes we have atB = 0 the well-known picture of plasmons in a LMWSL (see
e.g. reference [11]) and atB = ∞ that of 2D magnetoplasmons (see e.g. reference [48]).
At large but finite magnetic fields we have the confined principal modes (FM and AMs) and
the confined Bernstein modes (FMs and AMs). Like in the case of vanishingqx , for qx 6= 0

Figure 5. The dependence of the dispersion relations of the magnetoplasmons of a LMWSL
calculated in the RPA on the magnetic fieldB for qx = 1× 105 cm−1: (a) d = 200 nm and
(b) d = 100 nm. The hatched areas indicate the magnetoplasmon minibands (boundaries are
shown forqy = 0 by solid curves and forqy = π/d by dashed curves) and the shaded areas
correspond to the single-particle intra- and intersubband continua.
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and finite (intermediate) magnetic fields the different modes strongly hybridize and for small
magnetic fields (B → 0) the FMs originate from the confined principal modes and the AMs
from the confined Bernstein modes. It is important to note that thefine structureof the
intersubband magnetoplasmons of a LMWSL occurs independently of the shape of the lateral
confining potential. Thus, the existence of FMs and AMs is just the consequence of thereduced
symmetryand, therefore, afundamentaland intrinsic propertydue the Q1D quantization in
each wire, and this property is conserved in the presence of Coulomb coupling between the
different wires.

From the results discussed up to now, it becomes obvious why the theory of magneto-
plasmons for single isolated QWWs, presented in reference [31], explains very well the
experimental results [4, 36] obtained for LMWSLs. The theory developed here, valid for
magnetoplasmons in LMWSLs, gives the same types of mode—intrasubband modes and two

Figure 6. The dependence of the dispersion relations of the plasmons and magnetoplasmons of a
LMWSL calculated in the RPA on the wave-vector componentqy for d = 100 nm: (a)B = 0,
qx = 0; (b)B = 1 T, qx = 0; (c)B = 0, qx = 1× 105 cm−1; and (d)B = 1 T, qx = 1× 105

cm−1. The shaded areas correspond to the single-particle intra- and intersubband continua.
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types of intersubband mode: FMs and AMs—as in the case of a single isolated QWW. Besides
the additional dispersion according to the mode propagation along they-axis, these modes have
in both systems the same physical properties and, as shown above, the additional dispersion
with qy does not result in any mode crossing/anticrossing behaviour. Furthermore, because
this dispersion only becomes important for superlattice periodsd < 200 nm, the theory of
magnetoplasmons for a single QWW and that for a LMWSL give for superlattice periods of
d > 350 nm, as used in the experiments presented in references [4,36], the same results. Hence,
the theory of magnetoplasmons in LMWSLs developed here is able to explain the experiments
performed up to now and it should also be a powerful method for explaining further experiments
on shorter-period LMWSLs including the case for which tunnelling between the wires becomes
important.

Figure 7. The dependence of the dispersion relations of the plasmons and magnetoplasmons of
a LMWSL calculated in the RPA on the superlattice periodd: (a)B = 0, qx = 0; (b)B = 1 T,
qx = 0; (c)B = 0, qx = 1× 105 cm−1; and (d)B = 1 T, qx = 1× 105 cm−1. The hatched
areas indicate the magnetoplasmon minibands (boundaries forqy = 0 are shown by solid curves
and forqy = π/d by dashed curves) and the shaded areas correspond to the single-particle intra-
and intersubband continua.
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The dependences of the RPA dispersion relations of the plasmons and magnetoplasmons
of the LMWSL on the wave-vector componentqy are plotted in figures 6(a) to 6(d) for two
different values of the wave-vector componentqx and two different values of the magnetic
field B. It is seen that with increasingqy the frequency of the intrasubband magnetoplasmon
always decreases, while those of the intersubband magnetoplasmons behave differently. The
strength and sign of the dispersion of a given intersubband mode depend on the superlattice
period, as shown in figure 7.

In figures 7(a) to 7(d) the dependences of the dispersion relations of the plasmons and
magnetoplasmons of the LMWSL on the superlattice periodd are plotted for two different
wave-vector componentsqx and magnetic fieldsB. It is seen that with increasingd the widths
of the minibands decrease. Ford > 300 nm the miniband widths of the branches plotted is
practically zero and the frequencies of the modes become independent ofd, i.e. the Coulomb
coupling becomes unimportant for the modes. Physically this means that for lateral distances
larger than 300 nm the bare Coulomb potential becomes nearly totally screened. Thus, in
this way, we have found that thelateral screening length[qsy ]

−1 is about 200–250 nm for the
LMWSL under consideration.

Please note that ford < 100 nm electron tunnelling between the single QWWs of the
LMWSL may become important, leading in this range to deviations from the plotted plasmon
and magnetoplasmon minibands.

The dependences of the RPA dispersion relations of the plasmons and magnetoplasmons
of the LMWSL under consideration on the angleϕ between thex-axis and the wave vector
q‖ = (qx, qy) of the propagating mode in thex–y plane are plotted in figures 8(a) and 8(b):
qx = q‖ cosϕ, qy = q‖ sinϕ, q‖ = (q2

x + q2
y )

1/2. From figure 8(a) it is seen that in the case of
B = 0 andq‖ = 1× 105 cm−1, for small angles only the intersubband plasmonω20

p occurs as
a collective mode, while the (0–0) intrasubband plasmon and the (1–0) intersubband plasmon
are Landau damped. But for larger angles, the plasmon modesω00

p andω10
p also appear in the

spectrum of the collective excitations. ForB = 1 T (figure 8(b)) the modesω00
mp, ω10;1

mp , ω10;2
mp ,

ω20;1
mp andω20;2

mp appear for 06 ϕ 6 π/2 and the modesω10;3
mp andω20;3

mp are resolvable from
the upper boundary of the corresponding SPE continuum only for largerϕ.

Figure 8. The dependence of the dispersion relations of the plasmons and magnetoplasmons of a
LMWSL calculated in the RPA on the angleϕ between thex-axis and the propagation direction of
the mode in thex–y plane forq‖ = 1× 105 cm−1 andd = 100 nm: (a)B = 0 and (b)B = 1 T.
The shaded areas correspond to the single-particle intra- and intersubband continua.
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5. Conclusions

In this work, we have investigated the magnetoplasmons of a lateral multiwire superlattice
using the tight-binding approximation for the electronic ground state to calculate the dynamical
response. The magnetoplasmons of each wire are coupled via the Coulomb coupling forming
the magnetoplasmons of the LMWSL which can propagate in thex–y plane. The theory
developed here takes into account Umklapp processes. It is shown that the magnetoplasmons
of LMWSLs show the same fine-structure effects as the magnetoplasmons of a single isolated
QWW [31] and, thus, the normal modes of the system can be classified into fundamental
and additional modes. According to a possible mode propagation perpendicular to the wire
axes due to the Coulomb coupling, the mode spectrum shows minibands for both FMs and
AMs. The FM minibands are defined as such minibands, which exist (i) atB = 0, where
the modes forming the FM minibands become identical to the plasmons of the corresponding
LMWSL, and (ii) atB = ∞, where these modes become the principal mode and the Bernstein
modes of a two-dimensional electron gas. Between these limits the reduced symmetry causes
fine-structure effects. Hence, the principal mode and the Bernstein modes of a 2DEG become
split in a LMWSL with the result that the FM and AM minibands appear. The AM minibands
approach forB → 0 the associated frequencies of the single-particle excitation and, hence,
lose their collective character. Thus, at small magnetic fields the AMs may be interpreted as
the Bernstein modes of the LMWSL. For intermediate magnetic fields strong-hybridization
effects appear in the mode spectrum. This picture of the magnetoplasmon spectrum for a
LMWSL is independent of the shape of the lateral confining potential and, thus, is universal.
As shown in reference [31], depending on the physical parameters of the single QWWs,
many crossing/anticrossing effects can occur. But these effects have their origin in the mode
spectrum of the Q1DEG in the single isolated wire alone. The Coulomb coupling between the
magnetoplasmons of the different wires does not give rise to additional crossing/anticrossing
effects in the mode spectrum.

Our theory is the first quantum theory of magnetoplasmons which agrees very well with
that of plasmons in LMWSLs forB = 0 [11], with the 2D case forB →∞ [48] and shows the
same fine-structure effects as a single isolated QWW [31] for finite magnetic fields, realizing
this limit for d →∞. It is shown that the Coulomb coupling of the magnetoplasmons and the
resulting miniband structure become important only for superlattice periodsd < 200 nm. For
larger-period LMWSLs the results for a LMWSL and for a single isolated QWW become
practically the same. Thus, the theory developed here is successful in explaining recent
experimental results, which were obtained for larger-period LMWSLs. Furthermore, this
theory should be successful in explaining future experimental work on shorter-period LMWSLs
including the case in which tunnelling between the wires becomes important.
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